automatic continuity of almost multiplicative maps between frechet algebras
Authors
abstract
for fr$acute{mathbf{text{e}}}$chet algebras $(a, (p_n))$ and $(b, (q_n))$, a linear map $t:arightarrow b$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(tab - ta tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{n}$, $a, b in a$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that for every $k in mathbb{n}$, there exists $n(k) in mathbb{n}$, satisfying the inequality $q_k(tab - ta tb)leq varepsilon p_{n(k)}(a) p_{n(k)}(b),$ for all $a, b in a$. we investigate the automatic continuity of (weakly) almost multiplicative maps between certain classes of fr$acute{mathbf{text{e}}}$chet algebras, such as banach algebras and fr$acute{mathbf{text{e}}}$chet $q$-algebras. we also obtain some results on the automatic continuity of dense range (weakly) almost multiplicative maps between fr$acute{mathbf{text{e}}}$chet algebras.
similar resources
Automatic continuity of almost multiplicative maps between Frechet algebras
For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...
full textAlmost n-Multiplicative Maps between Frechet Algebras
For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n in mathbb{N}$, $ngeq 2$, a linear map $T:A rightarrow B$ is called textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $varepsilongeq 0$ such that$$q_k(Ta_1a_2cdots a_n-Ta_1Ta_2cdots Ta_n)leq varepsilon p_k(a_1) p_k(a_2)cdots p_k(a_n),$$for each $kin mathbb{N}$ and $a_1, a_2, ldots, a_nin A$. Th...
full textClose operator algebras and almost multiplicative maps
where A,B ⊂ B(H), and the distance between A⊗Mn and B ⊗Mn is measured in B(H) ⊗ Mn ∼= B(H). We also investigate the consequences of “complete closeness”, i.e. what can be said when dcb(A,B) is small? For example, if dcb(A,B) is small, then any projection p ∈ A ⊗ Mn can be suitably approximated by a projection q ∈ B ⊗ Mn, leading an isomorphism K0(A) → K0(B) which maps [p]0 to [q]0. This strateg...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۱، شماره ۶، صفحات ۱۴۹۷-۱۵۰۹
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023